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Biochemical aspects of stuck and sluggish fermentation in
grape must
H Alexandre and C Charpentier

Laboratoire d’Oenologie, Institut Universitaire de la Vigne et du Vin, Universite
´

de Bourgogne, 21004 Dijon, France

Recently a number of studies have focused on the factors responsible for the occurrence of stuck and sluggish
fermentations. Results from these studies indicate that together with nutritional deficiencies and inhibitory sub-
stances, technological practices could lead to such situations. This review explains, from a biochemical point of
view, the influence of nutritional deficiencies, inhibitory substances and technological practices on yeast cell devel-
opment and physiology and the fermentation process.
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Introduction

One of the very important objectives during most wine-
making processes is the achievement of complete alcoholic
fermentation, so that the residual fermentable sugar in the
wine is less than 2–4 g L−1. The completion of the fermen-
tation then allows the winemaker to begin the finishing
operations, and more importantly, allows the wine to be
stored under conditions of restricted contact with air, avoid-
ing the resulting destructive oxidation reactions. Further-
more, complete alcoholic fermentation may help avoid
problems not only with acetic acid bacteria but also with
lactic acid bacteria, which could metabolise residual sugars
to increase volatile acidity and also in the formation of
abnormal esters and perhaps alter the pattern of diacetyl
formation [69].

The current literature which relates to stuck or sluggish
fermentation is substantial. Factors such as high initial
sugar content [55], vitamins or nitrogen substrate
deficiencies [1,40,72,88], anaerobic conditions [98], high
ethanol content [22], excessive clarification of the must
[34], presence of toxic fatty acids [33,102] and high con-
centrations of volatile acidity [50] have all been considered
to be the cause of fermentation problems. The actual study
of stuck and sluggish fermentation is therefore often
rendered very difficult due to the multiple factors which
could lead to a decrease in fermentation rate and the possi-
bility of synergistic effects.

Despite the large body of literature concerning the cause
of stuck or sluggish fermentation there are no reports which
describe the relationship between the factors which lead to
protracted fermentation and the biochemical mechanisms
responsible for the decrease in fermentation rate. Therefore,
the intent of this review is to focus on both factors and
biochemical mechanisms responsible for stuck and sluggish
fermentation in grape must.
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Nutritional deficiencies

Nitrogen deficiency
In some cases stuck or sluggish fermentation would appear
to be caused by insufficient levels of assimilable nitrogen
[1,40,88]. Nitrogen content in grape juice ranges from 60
to 2400 mg N L−1 [71], depending on grape variety, viticul-
tural region, berry maturation and winemaking process
[37]. For these reasons many researchers have attempted to
quantify the requirement of wine yeast for assimilable
nitrogen [43]. Various studies have shown that a minimum
of 120–140 mg N L−1 is required to produce a normal fer-
mentation rate. In a recent study Jiraneket al [43] demon-
strated that nitrogen utilization was also influenced by the
presence of air and initial glucose concentration. A low
initial level of nitrogen acts by limiting growth rate and
biomass formation of yeast, resulting in a low rate of sugar
catabolism [14,65,66,88].

Upon exhaustion of the nitrogen source in the medium,
a drastic decrease in sugar transport activity is observed
[19,56] which may account in part for the inhibition of CO2

production. This sugar transport inactivation is triggered by
the arrest in protein synthesis linked to the lack of nitrogen
source. While the half-life of the bulk proteins is greater
than 70 h, the half-life of the glucose transport process is
about 5 h. Thus complete inactivation of glucose transport
occurs about 50 h after ammonium depletion [88,90]. To
avoid glucose transport inactivation, it is necessary to main-
tain a high rate of protein synthesis which can be supported
by an ample ammonium supply, before the depletion of
assimilable nitrogen. The decrease in carbon dioxide evol-
ution rate, which is related to lack of ammonium source,
could also be explained by two other possible mechanisms.
The first one involves the deactivation of the key enzyme,
phosphofructokinase. It has been demonstrated that
ammonia is an allosteric activator of phosphofructokinase
[77]. The second mechanism is also related to the deacti-
vation of phosphofructokinase. With a depletion in the sup-
ply of ammonia, the signalling pathway induced by the
presence of fermentable sugar is also directly impacted,
leading to decreased CO2 evolution rates [96].
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Metabolism of yeast in fermentation is dependent on the
presence of dissolved oxygen at the beginning of the fer-
mentation. During the fermentation, dissolved oxygen is
rapidly consumed by the oxidases naturally present in the
must and by the yeast. Decrease in oxygen availability
results in an inhibition of fatty acid and sterol biosynthesis
in the yeast [10,25] and consequently a decrease in biomass
production and rate of glycolysis. Biosynthesis of mono-
unsaturated fatty acyl residues inS. cerevisiaeproceeds
from the saturated residue in a reaction which involves
NADPH and molecular oxygen. Under anaerobic con-
ditions, Andreasen and Stier [9] observed an inactivation
of the oxygen-dependent desaturase. Sterol biosynthesis in
yeast also requires oxygen; for example, the cyclization of
squalene which allows lanosterol synthesis to occur is oxy-
gen dependent [78].

In a recent study, we have shown that deprivation of
oxygen during fermentation of grape must induces qualitat-
ive and quantitative changes in the lipid composition of the
cell [2]. We observed a rapid decrease in unsaturated fatty
acid level during fermentation of must and, at the same
time, an increase in squalene levels, which indicated an
inhibition of sterol biosynthesis. When fermenting wort or
grape juice is aerated, enhanced yeast growth and viability
are observed. The increase in viability at the end of
alcoholic fermentations, which comes from the aerobic for-
mation of special sterol and fatty acids, resulted in their
being named ‘survival factors’ [54,99]. Undoubtedly they
are also used as growth factors, but their importance is
more dramatically demonstrated at the ethanol concen-
trations normally associated with fermentation of high
sugar media such as grape juice or high gravity wort. The
greater survival rate of yeast when fermenting wort is aer-
ated is probably associated with a plasma membrane
enriched in unsaturated fatty acids and ergosterol [2,62].
Evidence of the direct role of unsaturated fatty acids and
sterols in the observed increase in cell viability during fer-
mentation was provided in an experiment in which sterols
and unsaturated fatty acids were added to the wort [25].
Enrichment of the plasma membrane lipids of anaerobically
grown S. cerevisiaewith linoleic acid proved even more
effective than supplementation with palmitoleic acid for the
enhancement of cell viability in the presence of ethanol
[98]. Thus, oxygen deficiency is responsible for sluggish
fermentation as a consequence of the inhibition of lipid
biosynthesis which results in decreased ergosterol and
unsaturated fatty acid content, decreased biomass pro-
duction and yeast viability. Alteration in plasma membrane
lipid composition also results in changes in ethanol toler-
ance in the yeast cell. This relationship between lipid com-
position and ethanol tolerance will be discussed in more
detail below.

To prevent the adverse effects due to lack of oxygen,
winemakers often aerate the must and according to Sablay-
rolles and Barre [83], production of biomass and cell
viability are maximal when oxygen is added at the end of
yeast growth. This greater viability is due to an increase in
ethanol tolerance associated with lipid composition in the
plasma membrane and with decreased levels of toxic
fatty acids.

Oxygen deprivation affects toxic fatty acid production,
ie the production of octanoic and decanoic acid. We have
shown that the level of these acids decreases during aer-
ation of the must [2]. In the presence of oxygen, acyl-CoA
synthesis is greater than under anaerobic conditions [70].
The presence of acyl-CoA inhibits fatty acid biosynthesis
by inhibiting acetyl-CoA carboxylase [47] and fatty acid
synthetase [94] which are directly linked to the lower level
of toxic fatty acids when oxygen is present in the must.

The above effects of oxygen deprivation help explain the
importance of addition of small amounts of sulfur dioxide
to the must immediately after the grapes are crushed. The
sulfur dioxide is inhibitory to oxidase enzymes naturally
present in the must, especially the polyphenol oxidases. If
these enzymes are not immediately inhibited, they will
scavenge most of the dissolved oxygen (which is already
very low because of its natural low solubility). Further-
more, the practice of aeration, mentioned above, will also
not be effective unless these enzymes have been inhibited
[17].

Mineral deficiency
Magnesium is important for many metabolic and physio-
logical functions in yeast [103]. Magnesium is involved in
cell integrity, generally by stabilizing nucleic acid, proteins,
polysaccharides and lipids. Mg2+ also plays a key role in
metabolic control, growth and cell proliferation. For greater
detail, the review of Walker [103] is useful.

Although there have been no investigations to evaluate
the role of Mg2+ during the alcoholic fermentation of grape
must, the importance of this element in the fermentation
process will be described since numerous studies report the
influence of magnesium on the alcoholic fermentation of
molasses or glucose (in minimal or complex media)
[29,44,103,104]. Therefore it seems likely that magnesium
constitutes an important factor of must fermentations.

Magnesium is indispensable to the glycolytic pathway
since it is required for hexokinase and phosphofructokinase
activity and the decarboxylation of pyruvate. This element
is also involved in the activation of the alcohologenic
enzymes. Thus magnesium plays a central role in ethanol
production. There is a direct relationship between magnes-
ium availability and fermentation kinetics. Limited Mg2+

availability is responsible for decreased yeast growth and
fermentative activity [24,29,46]. Addition of magnesium in
the fermentation medium results in enhanced ethanol pro-
duction. This may be explained by the fact that magnesium
stabilizes membrane structure [29]. Dombek and Ingram
[29] demonstrated that increasing magnesium concentration
in the medium resulted in a two-fold increase in ethanol
production, which could be explained by a prolonged
exponential growth phase in yeast resulting in increased
cell mass, rate and yield of ethanol. These authors sug-
gested that Mg2+ could reverse the inhibitory effects of
ethanol. Supplementation of Mg2+ could counteract etha-
nol-induced leakage and consequently restore metabolic
activity.

Unfortunately, data concerning Mg2+ levels in grape
must are scarce. In white grape must, Walker [103] reported
a concentration of 58 mg L−1, Amerine et al [8] reported
10–25 mg L−1 and Eschnauer [31] reported 60–140 mg L−1
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in wine. It is interesting that Kunkee and Bisson [51] noted
that the optimum concentration of Mg2+ ions to restore
viability in yeast (5 mg L−1) was less than that naturally
found in vinification media. Further work related to Mg2+

utilisation byS. cerevisiaeand Mg2+ interaction with wort
constituents during fermentation of grape must is needed.

Vitamin deficiency
Some sluggish fermentations appear to be associated with
insufficient availability of vitamins [72]. Literature con-
cerning vitamin deficiency in grape must is rare and studies
have focused essentially on thiamine levels which may
range from 150 to 750mg L−1 [76]. AlthoughS. cerevisiae
is able to synthesise thiamine, lack of thiamine in the fer-
mentation medium may lead to sluggish fermentation. In a
recent study, Bataillonet al [11] have shown that the
observed decrease in thiamine levels in must could result
from a rapid assimilation by wild yeast. They observed that
a contaminant wild-type yeast population could deplete
thiamine from the medium in a few hours, leading rapidly
to stuck or sluggish fermentations. Musts are naturally con-
taminated with wild yeast populations; thus enological
practices which delay the inoculation of the must with non-
wild-type S. cerevisiaecould affect the fermentative
activity.

Thiamine is cleaved, and its biological activity
destroyed, by sulfur dioxide (that is by disulfite ions). This
cleavage can lead to fermentation difficulties when
especially high concentrations of sulfur dioxide are
employed or when grape musts (or concentrates) are stored
for long periods of time at nominal concentrations of sulfur
dioxide [17].

Inhibitory substances

Ethanol
Accumulation of ethanol during the fermentation of sugars
by yeasts can lead to inhibition of the fermentation process
itself and cause other unfavourable effects in yeast cells.
Although ethanol ‘accumulates’ inside the cell during
alcoholic fermentation, the best evaluations seem to show
that the intracellular and extracellular concentrations of
ethanol are comparable [51]. The biochemical bases for
these events have been widely studied. Figure 1 summarises
the main effects of ethanol on the cell.

It is well known that ethanol inhibits yeast growth
[42,97] and viability [98]. Among the different transport
systems utilised byS. cerevisiae, ethanol has been shown
to inhibit the general aminoacid permease [20] and the glu-
cose transport system [57,61,67,75,87]. It should be noted
that up to 8.5% ethanol (v/v) does not change the glucose
uptake velocity or the activity of key glycolytic enzymes.
However, the fermentation rate is reduced by about 50%
[75]. Conversely to the previous report, Leao and Van Uden
[57] and Mauricio and Salmon [61] demonstrated that etha-
nol inhibits sugar transport activity. In a recent study
Zamoraet al [105] reported that sugar transport inactivation
by ethanol showed different patterns depending on whether
the high or low affinity transport system was investigated.
At 5–15% (v/v) ethanol, altered activities in the low affinity
transport system are seen. With the high affinity transport

system, an increase in inhibition was observed with increas-
ing ethanol concentration. The observed decrease in CO2

production during enological fermentation is in part due to
a decrease in sugar transport efficiency. This latter event
results from catabolite inactivation and non-competitive
inhibition of the sugar transport system by ethanol
[87,88,105].

Ethanol also inhibits proton fluxes [21,48,58]. The
ethanol-induced increase in the rate of proton influx
decreases the transmembrane proton gradient, possibly
resulting in the uncoupling of electrogenic processes and
subsequent growth inhibition [58]. We and others have
recently shown that the plasma membrane ATPase respon-
sible for the creation of the electrochemical gradient, was
activated when cells were grown in the presence of ethanol
[4,81]. This adaptation mechanism is supposed to counter-
act increased cytoplasmic acidification induced by sub-
sequent exposure to ethanol [4]. A decrease in plasma
membrane H+ATPase activity during the late exponential
growth phase ofSaccharomyces cerevisiaecultures has
been reported [100]. The plasma membrane H+-ATPase is
responsible for the creation of an electrochemical gradient
which constitutes the driving force for nutrients. A decrease
in fermentation rate could be expected subsequent to the
decrease in nutrient uptake. However it is not known if the
decrease in fermentation is related to the decrease in
ATPase activity, since there are currently no systematic
studies on the evolution of ATPase activity during fermen-
tation under enological conditions.

The presence of ethanol also affects the plasma mem-
brane ofS. cerevisiae; the damage caused results in altered
membrane organisation and permeability [41,57,59,98].
Ethanol interacts with membranes, possibly by entering the
hydrophobic interior and thereby increasing the polarity of
this region, thus permitting the free exchange of polar mol-
ecules and weakening the hydrophobic interactions.
Ethanol stress is known to produce changes in the lipid
composition of the yeast plasma membrane
[5,6,26,51,57,59,64,86,98], including the saturation level
and chain length of unsaturated fatty acids, thereby
resulting in a modification of membrane fluidity
[5,6,45,59]. An increase in unsaturation index correlated
well with an increase in ethanol tolerance and increased
viability of S. cerevisiae[4,12]. Uptake of glucose and
amino acids was also less affected by ethanol in yeast
enriched with unsaturated fatty acids [97]. Increased
viability when oxygen is added to the fermentation medium
is due to enhanced synthesis of unsaturated fatty acids and
sterols, the so-called ‘survival factors’ (see above), which
allow greater ethanol tolerance and minimise the detrimen-
tal effects of ethanol. It is clear that a decrease in fermen-
tation rate is related to ethanol formation, when one takes
into account all the related effects of ethanol in the fermen-
tation medium. Depending on the ethanol tolerance of the
yeast, a high level of ethanol may quickly lead to stuck or
sluggish fermentation.

Toxic acids

Medium chain fatty acids: Numerous factors favour
stuck or sluggish fermentation as previously described.
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Figure 1 Mechanisms of action of inhibitors present in wine on yeast metabolism.

However, in a rich medium fermenting under satisfactory
physico-chemical conditions, the cell yeast cycle may
decline, with a consequent decline in fermentation activity
until complete arrest of the process. In this case, it is clear
that inhibition results from modification of the medium due
to yeast metabolism. Apart from ethanol, medium chain
fatty acids constitute another type of fermentation inhibitor
produced during alcoholic fermentation [53]. According to
Taylor and Kirsop [95], the medium chain fatty acids
excreted into the wort during alcoholic fermentation byS.
cerevisiaeare intermediates in the biosynthesis of long
chain fatty acids. The amount of fatty acids released into
the fermentation medium is dependent on the yeast strain,
medium composition and fermentation conditions
(temperature, pH aeration) [2,46,49]. Nordstro¨m [68] and
Freezeet al [32] have described medium chain fatty acids
as antimicrobial components. With concentrations of up to
114 and 46mM of octanoic and decanoic acid respectively,
the specific growth rate ofS. cerevisiaedecreased as an
exponential function of the fatty acid concentration [102].
Decanoic acid caused rapid cell death at its inhibitory con-
centration [39] of 46mM. These fatty acids also decreased
the specific thermal death rate ofSaccharomyces bayanus
[85] and stimulated ethanol-induced leakage of amino acids
and unknown compounds (with a 260 nm-absorbing
capacity) fromS. cerevisiae[84].

Fatty acid activity is highly dependent on the pH of the
medium: toxicity increases as pH decreases, indicating that
the undissociated molecule is the most toxic, decanoic acid
being more inhibitory than octanoic acid [102]. Stevens and
Servaas Hofmeyer [91] showed fatty acids with shorter
chain lengths exerted their effect by acting as proton car-
riers across the yeast plasma membrane, thereby reducing
the intracellular pH and disrupting the proton gradient.
These weak-acid preservatives enter the cell by simple dif-
fusion, and once in the cytoplasm they rapidly dissociate

into ions thus releasing protons and acidifying the cyto-
plasm (Figure 1). Decanoic acid, for example, enhanced the
passive H+-influx across the plasma membrane. In a recent
study, we reported [3] that decanoic acid induced an alter-
ation of the plasma membrane by increasing fluidity which
may explain the observed increase in proton influx. The
direct inhibitory effects of medium chain fatty acids on
yeast cell growth account for the observed reduction of fer-
mentation rate when high levels of medium chain fatty
acids are present in the fermentation medium. It is possible
that the medium chain fatty acids act in direct synergy with
ethanol [85], to further slow the fermentation process.

In a recent study Zamoraet al [105] described the effect
of decanoic and octanoic acid on glucose transport. Both
acids inhibit the high and low affinity hexose transport sys-
tem, with high affinity transport being more sensitive to
acidic effects. The inhibitory effect of decanoic acid was
greater than octanoic acid. From their results they con-
cluded that the inhibition of the high affinity transport sys-
tem by medium chain fatty acids could be responsible for
stuck or sluggish fermentation, since when sugar concen-
tration is around 10 g L−1, the high affinity transport system
is responsible for sugar uptake [16,63].

Acetic acid: Another end product of alcoholic fermen-
tation, acetic acid, also enhances the toxicity of ethanol
with respect to growth, fermentation and viability in wine
yeasts (Figure 1). The mode of action of acetic acid
resembles that of the medium chain fatty acids [23].
Depending on extracellular pH, acetic acid enters the cell
by simple diffusion, where it dissociates [73]. In an attempt
to explain the role of acetic acid in the decrease in fermen-
tation rate, Pampulha and Loueiro-Dias [74] have studied
two possible inhibition mechanisms: either acidification of
the cytoplasm (pH dependence of enzymatic activity) or
the action of acetic acid directly on transport or enzymatic
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activities. These authors reported that enolase was the most
affected by acetic acid which resulted in alteration of gly-
colysis. It should be noted that many stuck and sluggish
fermentations are caused by the formation of high concen-
trations of acetic acid. This can occur during improper
transport of mouldy grapes from vineyards to the wineries,
allowing the premature commencement of alcoholic fer-
mentation of the released juices and subsequent acetifi-
cation by acetic acid bacteria [101]. It can also occur from
improper treatment of freshly crushed must (usually in red
wine vinification with unacceptably high initial pHs of
.3.5), and where the must is neither inoculated with wine
yeast nor treated with sulfur dioxide, allowing a very rapid
growth of the so-called ‘ferocious’ (but indigenous)Lacto-
bacilli resulting in high concentrations of acetic acid, rather
than lactic acid [17]. Another possible source of elevated
concentrations of acetic acid, probably not enough to give
marked inhibition of wine yeast activity but enough to give
a marked sensory defect, can be simultaneous alcoholic and
malolactic fermentations [52]. Wine regions with musts of
low nitrogen content seem to be especially sensitive to this
type of spoilage. In new wine-growing regions, simul-
taneous alcoholic and malolactic fermentations are quite
usual, with no adverse effects [17].

Effects of sulphites
Sulphites have been used for centuries in the sterilisation
of wine vessels, and are now used during wine making to
prevent oxidation of the must or the wine by the atmos-
phere [13]. Sulphite is highly toxic to microorganisms.
Wine bacteria and native yeasts and moulds are very sensi-
tive to sulphite action, while yeasts routinely employed for
fermentation are less sensitive [89]. The antimicrobial
action of sulphite in aqueous solutions depends on pH, tem-
perature and time of exposure. Sulfite exists in solution in
three forms (SO2, HSO3

−, SO3
2−), the proportions of which

depend on the pH value. At low pH, sulphite exists pre-
dominantly as molecular SO2 and at higher pH values larg-
ely as sulphite ions (SO32−) [18]. Molecular SO2 is 500-
fold more active on yeast than the other forms of sulphites
(HSO3

−, SO3
2−) which explains why the compound is parti-

cularly effective against yeasts present in the must where
the pH is in the range 3.0–3.5.

Sulphite is added at various stages during winemaking
but mainly to the must before alcoholic fermentation to
control the growth of undesired species. Addition of SO2

to the must should be tightly controlled; the dose used
should inhibit the growth of undesired species but allow
the development of fermentation yeast. It is well known
that yeast resistance to SO2 varies with the species [93].
Thus, high levels of SO2 in must could be responsible for
delayed or stuck fermentation [80], although this is rare
nowadays. The importance of the addition of sulfur dioxide
to inhibit polyphenol oxidases and to prevent the complete
depletion of oxygen, has already been mentioned. We will
summarise below the molecular mechanisms by which SO2

affects microbial cells. Further information may be found
in the review of Rose and Pilkington [82].

Sulfite toxicity to yeast is largely dependent on the level
of SO2 accumulation in the cell. Macris and Markakis [60]
reported that uptake of SO2 by Saccharomyces cerevisiae

occurred by active transport but, according to Stratford and
Rose [92], SO2 enters the cell by simple diffusion. Thus
the rate of sulphite transport should play an important role
in sulphite toxicity [92], and lower membrane fluidity will
facilitate diffusion across the plasma membrane [18].S.
cerevisiaeaccumulates SO2 very rapidly and at equilibrium,
intracellular sulphite concentrations are many times greater
than those in the suspension. This can be explained by the
dissociation of SO2 to the bisulphite anion HSO3− and H+

(due to the greater pH in the cell), thereby allowing further
diffusion into the cell (Figure 1).

Once inside the cell, sulphites cause a rapid decrease of
the intracellular ATP level. According to Hinzeet al [38],
the depletion in ATP is the decisive event causing cell
death. Mechanisms of cell death by sulphite are still
unknown, thoughin vitro reactions of sulphite with certain
molecules such as proteins, coenzymes and metabolites
have been demonstrated [82]. It is known that sulphites
react with NAD+/NADP, and also cleave thiamine and
disulphide bridges of proteins. In our system (must
fermentation), addition of an acetaldehyde and SO2 mixture
induced a switch-over from alcoholic fermentation to gly-
cerol fermentation [80]. SO2 is known to affect many
enzyme systems. Inhibition could result from confor-
mational changes, interaction with active sites or with
cofactors [82]. We have already mentioned the importance
of the cleavage of thiamine by high concentrations of di-
sulfite or in long-term storage of grape juice and grape
juice concentrate.

Enological practices

Must is the raw material of winemaking. White wine vini-
fications are usually conducted on clarified musts. The com-
mon clarification treatments used are sedimentation
(settling), clarification with separators, filtration or centri-
fugation. When a clarification process is too intense,
decreased fermentation rate and biomass production are the
results [28,30]. The clarification of grape must causes a
large decrease (40–100%) in fatty acid content (C12 to C18)
[15,27], in sterol content [28] and in macromolecules (15–
50%) [36] often related to sluggish alcoholic fermentation
[27,35,36]. Clarification increases acetic acid and medium
chain fatty acid production [7] which inhibit fermentation
activity [30]. This phenomenon is probably related to the
absence of long chain fatty acids in clarified must, in which
yeasts activate fatty acid synthesis from pyruvic acid via
acetyl-CoA. Under anaerobic conditions acetyl-CoA
accumulates and is hydrolysed to yield large amounts of
acetic acid [27]. It has been reported [7] that insoluble
materials in grape musts may also adsorb fatty acids and
stimulate yeast growth through more efficient elimination
of carbon dioxide [34].

Conclusion

The study of the factors responsible for the occurrence of
stuck and sluggish fermentation is receiving increased inter-
est because of the economic impact of fermentation prob-
lems. As reported in this review, many factors such as vit-
amin, magnesium, nitrogen and oxygen deficiencies or the
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presence of ethanol, toxic fatty acids, acetic acid or sul-
phites may be involved. The effects related to these factors
are numerous and include decrease in pH, inhibition of key
enzyme activities, and alteration of the plasma membrane.
These may induce decreases in the metabolism of the yeast
cell and consequently decreases in biomass production, cell
viability and fermentation rate. Furthermore, occurrence of
stuck or sluggish fermentation could be the result of inter-
actions of these factors. This explains why many studies
are conducted in synthetic media or media which try to
mimic the must. However, extrapolation from such studies
should be done with caution, since it has been previously
shown in the case of sugar transport activity that rates of
uptake were significantly different when determined in rich
medium or in must [79].
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